Introduction to the Inspection Checklist for Rooftop Solar Photovoltaic (PV) Systems in Indiana

This Inspection Checklist for Rooftop Photovoltaic (PV) Systems is based on the Model Inspection Checklist for Rooftop Photovoltaic (PV) Systems provided by Interstate Renewable Energy Council, Inc. (IREC) for use by municipalities across the United States.

An inspection checklist serves a variety of important functions:

1. **Educate installers** about requirements in advance, reducing the number of items that might need to be addressed afterward.

2. **Save time and resources** for both the installers and inspectors by reducing the number of re-inspections and on-site education required for new installers.

3. **Educate new and experienced inspectors** to ensure they are aware of the host of code requirements that must be verified on-site during the inspection.

4. **Increase consistency of inspections**, by both a single inspector, as well as different inspectors working for the jurisdiction to ensure high-quality, safe installations.

5. **Highlight common mistakes** or particular issues that seem to be repeatedly problematic for installers.

6. **Communicate new code requirements** simply by updating the checklist.

7. **Prevent misunderstandings** when an installer or inspector is unclear about the origin of the requirement or its exact wording.

NOTE: This inspection checklist is not a replacement for careful review and understanding of the actual code requirements.

This checklist is merely intended to act as an abbreviated tool, which can be used on-site for verification of compliance with code requirements and as a quick reference guide to help inspectors quickly find the correct code sections. Where there is a question about the actual language of the code section or the specificity of the requirement, both inspectors and installers should look up the code sections rather than relying on any inspection checklist.

Inspection Checklist for Rooftop Photovoltaic (PV) Systems

All referenced Code refers to the following documents as amended by the State of Indiana. Please refer to the [Indiana Fire Prevention and Building Safety Commission](https://www.in.gov/ifs) and the appropriate sections of the Indiana Administrative Code for the latest applicable codes.

- **International Code Council, Inc.**

- **National Fire Protection Association**

Section 1: PV Array Configuration

- Module manufacturer, make, model, and number of modules match the approved plans. (IBC 107.4)
- PV modules are listed to UL 1703. (NEC 110.3, 690.4 & IBC 1509.7.4)

 NOTE: AC modules need to be listed to UL 1703 and UL 1741.
- DC modules are properly marked and labeled. (NEC 110.3, 690.4(D) & 690.51)
- AC modules are properly marked and labeled. (NEC 110.3, 690.4(D) & 690.52)
- Modules are attached to the mounting structure according to the manufacturer's instructions and the approved plans. (NEC 110.3(B), IBC 107.4)
- Roof penetrations are flashed and counter-flashed. (IBC Chapter 15 & IRC Chapter 9)
- PV modules are in good condition (i.e., no broken glass or cells, no discoloration, frames not damaged, etc.). (NEC 110.12(B))
- Residential one and two family dwelling limited to maximum PV system voltage of 600 volts. (NEC 690.7)
- Rooftop systems are designed in accordance with the IBC. (IBC 1509.7)
- Roof access points, paths and clearances need to comply with the IFC. (IFC 605.11.3.1 - 605.11.3.3.3)

Section 2: Grounding

- A complete grounding electrode system is installed. (NEC 690.47(A) & (B))
- Modules are grounded in accordance with manufacturer's installation instructions using the supplied hardware or listed equipment specified in the instructions and identified for the environment, and using the grounding point identified on the module and in the manufacturer's instructions. (NEC 690.43 & 110.3(B))
- Properly sized equipment grounding conductor is routed with the circuit conductors. (NEC 690.45, 250.134(B) & 300.3(B))
- AC and DC grounding electrode conductors are properly connected. Separate electrodes, if used, are bonded together. (NEC 690.47, 250.50 & 250.58)
- Bonding fittings are used on concentric/eccentric knockouts with metal conduits for circuits
over 250 volts. (NEC 250.97) *(see also exceptions 1 through 4)*

- Bonding fittings are used for ferrous metal conduits enclosing grounding electrode conductors. (NEC 250.64(E))

Section 3: Wire Management

- Wires are secured by staples, cable ties, straps, hangers or similar fittings at intervals that do not exceed 4.5 feet. (NEC 334.30 & 338.12(A)(3))

- Wires are secured within 12 inches of each box, cabinet, conduit body or other termination. (NEC 334.30 & 338.12(A)(3))

- Cable closely follows the surface of the building finish or of the running boards. (IFC 605.11.2)

 NOTE: see Section 12 below for additional guidance on routing of conductors for fire fighter safety concerns.

- Exposed single conductors, where subject to physical damage, are protected. (NEC 230.50(B) & 300.5(D))

Section 4: Conductors

- Exposed single conductor wiring is a 90C, wet rated and sunlight resistant type USE-2 or listed PV wire. (NEC 690.31(B)) If the wiring is in a conduit, it is 90C, wet rated type RHW-2, THWN-2, or XHHW-2. (NEC 310.15)

- Exposed single conductors used for ungrounded (transformerless) systems are listed and identified as "PV wire." (NEC 690.35(D)(3)) For other conductor requirements for ungrounded systems see NEC 690.35(D).

- Conductor insulation is rated at 90C to allow for operation at 70C+ near modules. (NEC 310.15)

- Where conductors or cables are installed in conduits exposed to direct sunlight on or above rooftops, correction factors for ambient temperature adjustments are applied. (NEC 310.15(B)(2)(c))

- Grounded conductor is identified white or grey. (NEC 200.6)

- Open conductors are secured and protected. (NEC 338.12(A)(3) & 334.30)

- Conductors are not in contact with the roof surface. (NEC 334.30)

- DC conductors inside a building are in a metal raceway or MC metal-clad cable that complies with 250.118(10), or metal enclosures. (NEC 690.31(E))

- If more than one nominal voltage system conductor is installed in the raceway, permanent identification and labeling is required. (NEC 200.6(D) & 210.5(C))

- For underground conductor installations, the burial depth is appropriate and warning tape is in place. (NEC 300.5(D)(3) & Table 300.5)

- Aluminum is not placed in direct contact with concrete. (NEC 250.120(B) & 110.11)

- DC source circuit conductors are rated at \(1.25 \times 1.25 = 156\%\) short-circuit (ISC) current from modules. NOTE: The module ISC x number of combined strings, if strings are combined. When DC source circuits (strings) are connected in parallel the short circuit current multiplies and PV output conductors from combined strings need to be sized appropriately. (NEC 690.8(1) & (B)(1))

- PV circuit and premises wiring is separated. (NEC 690.4(B))
Section 5: Overcurrent Protection

- Overcurrent devices in the DC circuits are listed for DC operation. (NEC 110.3(A), (B) & 690.9(D))

- DC source circuit overcurrent protection devices are rated at 1.25 x 1.25 = 156% short-circuit (ISC) current from modules. NOTE: The module ISC x number of combined strings, if strings are combined. When DC source circuits (strings) are connected in parallel the short circuit current multiplies DC over-current protective devices need to be sized appropriately. (NEC 690.8(B)(1))

- Inverter output circuit overcurrent protection device (point of connection to AC system breaker) is sized based on the maximum inverter output current x 125%. (NEC 690.8(A)(3) & 690.8(B)(1))

- Overcurrent protection is required for the PV source circuit (modules and parallel connected modules), PV output circuit (conductors between source circuits and inverter), inverter output circuit, battery circuit conductors and equipment. (NEC 690.9(A))

- Where three or more strings are combined, a listed combiner box (UL1741) is used and fuses are required. When DC source circuits (strings) are connected in parallel, the current through a failed circuit can be the sum of the current connected from the other strings, therefore special consideration must be taken to ensure the sum of the total number of strings minus one does not exceed the module manufacturers series fuse rating, or conductor ampacity. (NEC 110.3(B), 690.9(A)) NOTE: There are a few exceptions where the module has a higher series fuse rating and a low ISC rating.

- When a back-fed breaker is used as a utility interconnection means, the breaker does not read "line and load." (NEC 690.64(B)(5), 110.3(B), 705.12(D)(5))

- PV interconnect breaker is located at the opposite end of the buss from the feeder connection, unless using 100% rated equipment. (NEC 690.64(B)(7), 705.12(D)(7))

Section 6: Electrical Connections

- Crimp on terminals are listed and installed using a listed tool specified for use in crimping those specific crimps. (NEC 110.3(B) & 110.14)

- Pressure terminals are listed for the environment and tightened to manufacturer recommended torque specifications. (NEC 110.11, 110.3(B) & 110.14)

- Connectors are listed for the voltage of the system and have appropriate temperature and ampere ratings. (NEC 110.3(B) & 110.14)

- Twist on wire connectors are listed for the environment (i.e. wet, damp, direct burial, etc.) and installed per manufacturer's instructions. (NEC 110.11, 110.3(B), 110.14 & 300.5(B))

- Power distribution blocks are listed. (NEC 690.4)

- Terminals containing more than one conductor are listed for multiple conductors. (NEC 110.14(A) & 110.3(B))

- Connectors and terminals used for fine strand conductors are listed for use with such conductors. (NEC 110.14(A) & 110.3(B))

- Connectors that are readily accessible and operating at over 30 volts require a tool for opening. (NEC 690.33(C))

- Module connectors are tight and secure. (NEC 110.3(B) & 110.12)
Section 7: Charge Controllers
- Charge controller is listed to UL Standard 1741. (NEC 110.3 & 690.4(D))
- Exposed energized terminals are not readily accessible. (NEC 110.27)
- Diversion charge controllers that are used as the sole means of regulating charging of batteries have a second independent means of control to prevent overcharging. (NEC 690.72(B)(1))

Section 8: Disconnects
- Disconnects used in DC circuits are listed for DC operation. (NEC 110.3)
- Disconnects are installed for all current carrying conductors of the PV source. (NEC 690.13 - 690.14)
- Disconnects are installed for the PV equipment. NOTE: For inverters and other equipment that are energized from more than one source, the disconnecting means must be grouped and identified. (NEC 690.15)
- Disconnects and overcurrent protection are installed for all ungrounded conductors in ungrounded (transformerless) PV power systems. (NEC 240.15 & 690.35)

Section 9: Inverters
- Inverters are listed to UL 1741. (NEC 690.4(D)) NOTE: grid-tied system inverters need to be identified for use in interactive power systems.
- Point of connection is at a dedicated breaker or disconnect. (NEC 690.64(B)(1), 705.12(D)(1))
- Total rating of the overcurrent devices supplying equipment does not exceed 120% of the equipment rating. (690.64(B)(2), 705.12(D)(2))
- Listed AC and DC disconnects and overcurrent protection are grouped and identified. (NEC 690.15)
- No multi-wire branch circuits are installed where single 120-volt inverters are connected to 120/240-volt load centers. (NEC 690.10(C))
- The plastic barrier is re-installed between the AC, DC wiring and communication wires. (NEC 110.3(B) & 110.27)

Section 10: Batteries
- Storage batteries for dwellings have the cells connected to operate at less than 50 volts. (NEC 690.71(B)(1))
- Live parts of battery systems for dwellings are guarded to prevent accidental contact by persons or objects. (NEC 690.71(B)(2))
- Flexible battery cables are listed RHW or THW, 2/0 minimum for battery cell connections. (NEC 690.74) NOTE: welding cables, marine, locomotive (DLO), and automotive cables do not meet the current Electrical Code requirements. (NEC 110.3(A) & (B))
- Flexible battery cables do not leave the battery enclosure. (NEC 690.74 & 400.8)
- Flexible, fine strand cables are only be used with terminals, lugs, devices, and connectors that are listed and marked for such use. (NEC 690.31(F), 690.74, 110.3(B) & 110.14)
- High interrupt, listed, DC rated fuses or circuit breakers are used in battery circuits. The AIC is at least 20,000 amps. (NEC 690.71(C) & 110.9)
☐ Cables to inverters, DC load centers, and/or charge controllers are in a conduit. (NEC 690.31(A) & 690.31(E))

☐ Conduits enter the battery enclosure below the tops of the batteries. NOTE: this is to avoid accidental ventilation of gases into electrical equipment where sparks may occur. Follow battery enclosure manufacturer's instructions for venting and conduit locations. (NEC 110.3(B), 480.9(A) & 480.10)

☐ A disconnect means is provided for all ungrounded conductors derived from a stationary battery system over 30 volts. (NEC 480.5 & 690.15) NOTE: see NEC 690.71(E) for additional service disconnecting means requirements for series connected battery circuits.

☐ Area is well ventilated and the batteries are not installed in living areas. (NEC 408.9(A) & 408.10)

Section 11: Signs and Labels

☐ All interior and exterior DC conduit, enclosures, raceways, cable assemblies, junction boxes, combiner boxes, and disconnects are marked. (IFC 605.11.1)

☐ The markings on the conduits, raceways and cable assemblies are every 10 feet, within one foot of all turns or bends and within one foot above and below all penetrations of roof/ceiling assemblies, walls and barriers. (IFC 605.11.1.4)

☐ Marking is placed adjacent to the main service disconnect in a location clearly visible from where the disconnect is operated. (IFC 605.11.1.3)

☐ The markings say “WARNING: PHOTOVOLTAIC POWER SOURCE” and have 3/8 inch (9.5 mm) minimum-sized white letters on a red background. The signs are made of reflective weather resistant material. Self-adhesive signs are available from suppliers. (IFC 605.11.1.1, 605.11.1.2)

☐ Labels are phenolic where exposed to sunlight. Labels required on conduit are permanent, weather resistant and suitable for the environment. Labels have a red background with white lettering. The following labels are required as applicable:

Table: Signage Requirements for PV systems

<table>
<thead>
<tr>
<th>Code Section</th>
<th>Location of Label</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC 690.5(C)</td>
<td>Utility-interactive inverter & battery enclosure</td>
<td>WARNING: ELECTRIC SHOCK HAZARD IF A GROUND FAULT IS INDICATED, NORMALLY GROUNDED CONDUCTORS MAY BE UNGROUNDED AND ENERGIZED</td>
</tr>
<tr>
<td>NEC 690.35(F)</td>
<td>All enclosures with ungrounded circuits or devices which are energized and may be exposed during operation</td>
<td>WARNING: ELECTRIC SHOCK HAZARD. THE DC CONDUCTORS OF THIS PHOTOVOLTAIC SYSTEM ARE UNGROUNDED AND MAY BE ENERGIZED.</td>
</tr>
<tr>
<td>NEC 690.14(C)(1)</td>
<td>On the main service when DC wiring is run through the building and the DC disconnect is located other than at the main service</td>
<td>DCDISCONNECT IS LOCATED....</td>
</tr>
<tr>
<td>NEC 690.14(C)(2)</td>
<td>On the AC and DC disconnects</td>
<td>PHOTOVOLTAIC SYSTEM DISCONNECT</td>
</tr>
<tr>
<td>Code</td>
<td>Location of Label</td>
<td>Text</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| NEC690.53 | On the DC disconnects | OPERATING CURRENT _______
 OPERATING VOLTAGE _______
 MAXIMUM SYSTEM VOLTAGE ___
 SHORT CIRCUIT CURRENT ___ |
| NEC690.54 | At interactive points of interconnection, usually the main service | RATED AC OUTPUT CURRENT ___ AMPS
 NORMAL OPERATING AC VOLTAGE ___ VOLTS |
| NEC690.14(D)(4), 705.10 | At the electrical service and at the PV inverter if not at the same location | A directory providing the location of the service disconnecting means and the photovoltaic system disconnecting means |
| NEC690.17 | On the DC disconnect and on any equipment that stays energized in the off position from the PV supply | WARNING! ELECTRIC SHOCK HAZARD. DO NOT TOUCH TERMINALS. TERMINALS ON BOTH THE LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN POSITION. |
| NEC690.64(B)(7) | Inverter output OCPD | WARNING: INVERTER OUTPUT CONNECTION DO NOT RELOCATE THIS OVERCURRENT DEVICE. |
| NEC690.55 | Battery enclosure | MAXIMUM OPERATING VOLTAGE, EQUALIZATION VOLTAGE POLARITY OF GROUNDED CONDUCTORS |
| IFC605.11.1.4 | On conduit, raceways, and enclosures, mark every 10 feet, at turns, above/below penetrations | WARNING: PHOTOVOLTAIC POWER SOURCE |

Section 12: Fire Safety

Systems on detached, non-habitable Group U structures are not required to meet the requirements for 605.11.1 through 605.11.4 in the IFC. Examples of Group U structures include carports, sheds, Class 1 agricultural structures, private garages (IBC 312.1 as amended).

- Rooftop mounted PV panels and modules have the proper fire classification rating. (IBC 1509.7.2)
- Rooftop DC Conduits are located as close as possible to the ridge or hip or valley and from the hip or valley as directly as possible to an outside wall to reduce trip hazards and maximize ventilation opportunities. (IFC 605.11.2)
- Conduit runs between sub arrays and to DC combiner boxes are installed in a manner that minimizes total amount of conduit on the roof by taking the shortest path from the array to the DC combiner box. (IFC 605.11.2)
- DC Combiner Boxes are located so that conduit runs are minimized in the pathways between arrays. (IFC 605.11.2)
- DC wiring in enclosed spaces in buildings is installed in metallic conduit or raceways. Conduit runs along the bottom of load bearing members. (IFC 605.11.2)
- Roofs on buildings with occupancies other than one- and two-family dwellings meet the following criteria (some exceptions apply, see 2012 IFC):
 - Access: There is a 6-foot-wide clear perimeter around the edges of the roof unless the axis of the building is less than 250 feet in which case the access perimeter is at least 4-foot-wide (IFC 605.11.3.3.1).
Pathways: The system complies with the pathway requirements for roof standpipes, roof access hatches, skylights, ventilation hatches, and the centerline axis (IFC 605.11.3.3.2).

Smoke Ventilation: The panels/modules are located to allow for fire department smoke ventilation operations by providing one of the following pathways: 1) 8 feet in width or greater, 2) 4 feet in width or greater and bordering skylights, smoke, and heat vents, or 3) 4 feet in width or greater and bordering a venting cutout that is 4 feet by 8 feet every 20 feet along alternating sides of the pathway (IFC 605.11.3.3.3).

All roofs have an access point that does not place ground ladders over openings such as windows or doors, are located at strong points of building construction, and in locations where the access point does not conflict with overhead obstructions such as tree limbs, wires, or signs. (IFC 605.11.3.1)

Access pathways are located at a structurally sound location capable of supporting the load of fire fighters accessing the roof. (IFC 605.11.3.2.1; 605.11.3.3.2)

The system is designed so that each photovoltaic array is no more than 150 feet by 150 feet on either axis (IFC 605.11.3; 605.11.3.3.3).

Roof Access, Pathways and Setbacks

Note that the ICC moved sections pertaining to residential roof access, pathways, and spacing requirements from the Fire Code to the Residential Code. Based on the ICC editions amended by the State of Indiana, these sections appear with different language in both the Indiana Fire Code and Indiana Residential Code. The 2014 Indiana Fire Code (IFC 2012) Section 601.11 “Solar photovoltaic power systems” contains 605.11.3 “Access and pathways” which applies in part to residential structures while the 2020 Indiana Residential Code (IRC 2018) Section R324 “Solar Energy Systems” contains different requirements in R324.5 “Roof access and pathways.” Emphasis is added (bold) on differing elements that may most impact panel layout and design. Consult your local Authority Having Jurisdiction (AHJ) such as your Building Department for more information on interpreting fire safety requirements.

2014 Indiana Fire Code - Excerpt pertaining to residential solar photovoltaic systems,

605.11.3.2. Residential systems for one- and two-family dwellings.

Access to residential systems for one- and two-family dwellings shall be provided in accordance with Sections 605.11.3.2.1. through 605.11.3.2.4.

605.11.3.2.1 Residential buildings with hip roof layouts

Panels/modules installed on residential buildings with hip roof layouts shall be located in a manner that provides a **3-foot-wide clear access pathway from the eave to the ridge on each roof slope where panels/modules are located.** The access pathway shall be located at a structurally strong location on the building capable of supporting the live load of fire fighters accessing the roof.

Exception: These requirements shall not apply to roofs with slopes of two units vertical in 12 units horizontal (2:12) or less.

605.11.3.2.2 Residential buildings with a single ridge.

Panels/modules installed on residential buildings with a single ridge shall be located in a manner that **provides two, 3-foot-wide access pathways from the eave to the ridge on each roof slope where panels/modules are located.**

Exception: Where it is determined by the fire code official that the roof configuration is similar to that of a one- or two-family dwelling, the residential access and ventilation requirements in Sections 605.11.3.2.1 through 605.11.3.2.4 shall be permitted to be used.
605.11.3.2.3 Residential buildings with roof hips and valleys

Panels/modules installed on residential buildings with roof hips and valleys shall be located no closer than 18 inches to a hip or a valley where panels/modules are to be placed on both sides of a hip or valley. Where panels are to be located on only one side or a hip or valley that is of equal length the panels shall be permitted to be placed directly adjacent to the hip or valley.

Exception: These requirements shall not apply to roofs with slopes of two units vertical in 12 units horizontal or less.

605.11.3.2.4 Residential building smoke ventilation

Panels/modules installed on residential buildings shall be located no higher than 3 feet below the ridge in order to allow for fire department smoke ventilation operations.

Illustration

The 2014 Indiana Fire Code (2012 IFC) requires a roof with a single ridge to have a 3 foot setback from the ridge and both eaves, as illustrated below from “Understanding the CAL FIRE Solar Photovoltaic Installation Guideline” by Bill Brooks. See the document for illustrations of a cross gable roof, cross gable roof with valley, full hip roof, and larger commercial rooftop systems.

Example Illustration (Bill Brooks)

2020 Indiana Residential Code (2018 IRC)

Note: In comparison, the 2020 Indiana Residential Code provides more flexibility depending on the total area occupied by panels, whether there are setbacks or access on adjacent roof planes, and where the roof plane is in relation to the driveway and structurally supported roof areas, and obstructions on the roof, and whether there is an automatic sprinkler system. For example, it would not require a setback from either of the eaves on the roof area with solar panels if it was not on the street or driveway side, provided there was a 3 foot pathway on an adjacent roof plane. It would also reduce the 3 foot setback from the ridge to 18 inches provided the panels occupied 33% or less of the total roof area.

Excerpt of 2018 IRC similar to 2012 IFC sections above.

Roof access, pathways, and setback requirements shall be provided in accordance with Sections R324.6.1 through R324.6.2.1. Access and minimum spacing shall be required to provide emergency access to the roof, to provide pathways to specific areas of the roof, provide for smoke ventilation opportunity areas, and to provide emergency egress from the roof.

Exceptions:

1. Detached, nonhabitable structures, including but not limited to detached garages, parking shade structures, carports, solar trellises and similar structures, shall not be required to
provide roof access.

2. Roof access, pathways and setbacks need not be provided where the code official has determined that rooftop operations will not be employed.

3. These requirements shall not apply to roofs with slopes of two units vertical in 12 units horizontal (17-percent slope) or less.

R324.6.1 Pathways

Not fewer than two pathways, on separate roof planes from lowest roof edge to ridge and not less than 36 inches wide, shall be provided on all buildings. Not fewer than one pathway shall be provided on the street or driveway side of the roof. For each roof plane with a photovoltaic array, a pathway of not less than 36 inches wide shall be provided from the lowest roof edge to ridge on the same roof plane as the photovoltaic array, on an adjacent roof plane, or straddling the same and adjacent roof planes. Pathways shall be over areas capable of supporting fire fighters accessing the roof. Pathways shall be located in areas with minimal obstructions such as vent pipes, conduit, or mechanical equipment.

R324.6.2 Setback at ridge.

For photovoltaic arrays occupying not more than 33 percent of the plan view total area, not less than an 18 inch clear setback is required on both sides of a horizontal ridge. For photovoltaic arrays occupying more than 33 percent of the plan view total roof area, not less than 36 inch clear setback is required on both sides of a horizontal ridge.

R324.6.2.1 Alternative setback at ridge.

Where an automatic sprinkler system is installed within the dwelling in accordance with NFPA 13D or Section P2904, setbacks at ridges shall comply with one of the following:

1. For photovoltaic arrays occupying not more than 66 percent of the plan view total roof area, not less than an 18-inch clear setback is required on both sides of a horizontal ridge.

2. For photovoltaic arrays occupying more than 66 percent of the plan view total roof area, not less than a 36-inch clear setback is required on both sides of a horizontal ridge.

R324.6.2.2 Emergency escape and rescue opening.

Panels and modules installed on dwellings shall not be placed on the portion of a roof that is below an emergency escape and rescue opening. A pathway not less than 36 inches wide shall be provided to the emergency escape and rescue opening.